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Abstract.
Since neither a human mind nor a computer can deal directly with infinite structures,
well-behaved models of belief change should operate exclusively on belief states
that have a finite representation. Three ways to achieve this without resorting to a
finite language are investigated: belief bases, specified meet contraction, and focused
propositional extenders. Close connections are shown to hold between the three
approaches.
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1. Introduction

Neither a human mind nor a computer can deal directly with infinite
entities. Therefore, a realistic representation of belief change should re-
flect the finiteness of actual belief systems. In the present contribution,
I will introduce and investigate three approaches to belief contraction
that satisfy this requirement. One of these approaches is based on a
suggestion by Wlodek Rabinowicz.

After formal preliminaries have been provided in Section 2, the re-
quirements of finiteness are developed in Section 3. The three models
will be introduced in Section 4, and their interrelations are investigated
in Section 5.

2. Formal preliminaries

The belief-representing sentences form a language L. Sentences, i.e.
elements of this language, are represented by lowercase letters (p, q, . . .)
and sets of sentences by capital letters. The language contains the usual
truth-functional connectives: negation (¬), conjunction (&), disjunc-
tion (∨), implication (→), and equivalence (↔).

To express the logic, a Tarskian consequence operator Cn will be
used. Intuitively speaking, for any set A of sentences, Cn(A) is the set
of logical consequences of A. Cn is a function from sets of sentences to
sets of sentences. It satisfies the standard conditions: inclusion (A ⊆
Cn(A)), monotony (If A ⊆ B, then Cn(A) ⊆ Cn(B)) and iteration
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Finitude in Belief Revision 3

(Cn(A) = Cn(Cn(A))) Furthermore, Cn is assumed to be supraclassical
(if p follows from A by classical truth-functional logic, then p ∈ Cn(A)),
and to satisfy the deduction property (q ∈ Cn(A ∪ {p}) if and only if
(p → q) ∈ Cn(A)).

A is a belief set if and only if A = Cn(A). A set A is finite-based if
and only if there is some finite set A′ such that Cn(A) = Cn(A′).

For any finite-based set A, &A (the “conjunction of A”) is a sentence
such that Cn(A) = Cn({&A}). Furthermore, for any set A of sentences,
C&(A) (the “conjunctive closure of A”) is the set {&(A′) | ∅ 6= A′ ⊆
A}.

K denotes a belief set. Cn(∅) is the set of tautologies. X ` p is an
alternative notation for p ∈ Cn(X) and ` p for p ∈ Cn(∅).

For any sets A and X, the remainder set A ⊥ X (“A remainder
X”) is the set of inclusion-maximal subsets of A that do not imply any
element of X. In other words, a set B is an element of A ⊥ X if and
only if B is a subset of A that does not imply any element of X, and
there is no set B′ not implying any element of X such that B ⊂ B′ ⊆ A.
For any sentence p, we define A ⊥ p = A ⊥ {p}. W = L ⊥ (p&¬p) is
the set of maximal consistent subsets of the language.

In one of the proofs we will make use of the upper bound property,
namely: If X ⊆ A and X implies no element of B, then there is some
X ′ such that X ⊆ X ′ ∈ A ⊥ B. As was observed by Alchourrón
and Makinson (1981, p. 129), the upper bound property follows from
compactness and Zorn’s lemma.

Expansion, denoted +, is the operation such that K + p = Cn(K ∪
{p}) Full meet contraction, denoted ∼, is the operation such that if
K ⊥ X is non-empty, then K ∼ X = ∩(K ⊥ X) and otherwise
K ∼ X = K. Furthermore, K ∼ p = K ∼ {p}.

3. The requirements of finitude

There are several ways to operationalize the rejection of infinite objects.
Perhaps the most obvious is:

L is finite (finite language)

The same effect can be obtained if the language is infinite but the logic
that is applied to it does not distinguish between more than a finite
number of equivalence classes of sentences in the language:

If X ⊆ L and Cn({p}) 6= Cn({q}) for all p, q ∈ X, then X is finite
(finite logic)
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4 Sven Ove Hansson

Clearly, the logic is finite if the language is finite. In a 1988 paper,
two members of the AGM trio, Peter Gärdenfors and David Makinson,
expressed support of finite logic. They wrote:

“In all applications, the knowledge sets [belief sets] will be finite in
the sense that the consequence relation ` partitions the elements
of K into a finite number of equivalence classes.’ (Gärdenfors and
Makinson 1988)

However, this is unnecessarily harsh. An infinite language can be built
from a finite set of components, and finite epistemic agents can make
use of unlimited linguistic constructs such as the series of natural num-
bers. For a simple example of this, for every positive integer n, let
πn denote that the Roman Catholic Church has at present at least
one and at most n popes. I believe in every sentence in the infinite
sequence π1, π2, π3, ... for the simple reason that I believe in π1 that
implies all the rest. Holding this set of beliefs is not an infinitistic
feat, but it nevertheless violates finite logic since no two sentences
in the sequence π1, π2, π3, ... are logically equivalent. The finiteness of
actual belief systems seems to be weaker than what is expressed by this
postulate.

Weaker and more plausible requirements of finiteness can be made.
First:

K is finite-based (finite-based origin)

Secondly, it can be required that the belief sets that are obtained
through contraction also have finite representations. This can be ex-
pressed as follows:

For all p, K ÷ p is finite-based (finite-based outcomes) (Hansson
1993)

Neither finite-based origin nor finite-based outcomes is in conflict with
the popes example. For the infinite sequence π1, π2, π3, ... to be included
in K or K ÷ p it is sufficient that π1 is included in the finite represen-
tation (base) of K (respectively K ÷ p). It should also be noted that
finite-based origin follows from finite-based outcomes if there is some p
(such as a tautology or a non-element of K) such that K ÷ p = K.

Thirdly and finally, it can be required that although there may be
infinitely many sentences by which the belief set can be contracted,
only a finite number of belief sets can be obtained through contraction:

{K ′ | (∃p)(K ′ = K ÷ p)} is finite (finite range) (Hansson 1993)
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Finitude in Belief Revision 5

This postulate is also compatible with the popes example. With rea-
sonable background beliefs about the Roman Catholic Church, π2, π3 ,
etc. are believed only as a consequence of belief in π1. They all stand
or fall with π1, so that if one of them is lost, then the rest of them
will be lost as well. Thus, e.g., K ÷ π8 = K ÷ π9. (There may be ways
to make me believe in π9 but not in π8, but this will have to involve
the acquisition of new beliefs, and cannot therefore be expressed by an
operation of contraction.)

Finite range may appear to be a less indispensable requirement in a
finitistic system than finite-based outcomes. The primary requirement is
that each belief state should have a finite structure, not that the number
of potential such states should be finite. It is instructive to compare to
revision. We should expect finite-based outcomes to hold for revisions of
a finite-based belief set, in other words K ∗p should be finite-based. On
the other hand, finite range is not a plausible requirement on revision,
in other words {K ′ | (∃p)(K ′ = K ∗ p)} may well be infinite. However,
there is an important difference between contraction and revision that
should be noted at this point: The operation of contraction should add
nothing new to the belief set. Since K does not contain resources for
making infinitely many distinctions, it should not have the inherent
infinite structure (namely divisibility in infinitely many different ways)
that is required for finite range to be satisfied.

Finite range and finite-based outcomes can be combined into the
following property:

There is a finite set A such that for every sentence p, K ÷ p =
Cn(A′) for some A′ ⊆ A. (finitude)

OBSERVATION 1. A contraction operator ÷ for K satisfies finitude
if and only if it satisfies both finite-based outcomes and finite range.

PROOF OF OBSERVATION 1: For one direction, suppose that finitude
is satisfied. Then there is a finite set A such that for every p, K ÷ p =
Cn(A′) for some A′ ⊆ A. Since every subset of A is finite, finite-based
outcomes holds. Since A only has a finite number of subsets, finite range
holds as well.

For the other direction, suppose that finite-based outcomes and fi-
nite range both hold. Let K1, ...Kn be all the possible outcomes of
contractions. For each Kk, with 1 ≤ k ≤ n, there is a finite set Ak such
that Kk = Cn(Ak). Let A = A1 ∪ ...∪An. Then A is the finite set that
is needed for finitude to hold.

As should be clear from the above, I consider finitude to be a reasonable
general requirement on rational belief change. Nevertheless, for reasons
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6 Sven Ove Hansson

of clarity, its two components will be treated as separate requirements
in what follows.

Finite-based outcomes and finite range are both conditions on the
range of possible contraction outcomes, and they are both neutral with
respect to the assignment of these outcomes to specific input sentences.
They are therefore range conditions, in the following sense:

DEFINITION 1. A condition C on operators of contraction is a range
condition if and only if it holds for all contraction operators ÷ and ÷′

that if {K ÷ p | p ∈ L} = {K ÷′ p | p ∈ L}, then C holds for ÷ if and
only if it holds for ÷′.

Closure (K ÷ p = Cn(K ÷ p)) is another range condition. In addition
to being range conditions, closure and finite-based outcomes have in
common that they both require that the contraction outcome has the
same type of belief representation as the initial belief set. A contraction
of a finite-based, logically closed set should result in a new finite-based,
logically closed set, not in a belief set that has no finite base or in a set
that is not logically closed.

Since this study is devoted to finiteness properties, the focus will be
on range conditions. Clearly, in a more general study of contraction,
other conditions will have a more prominent place. However, the fol-
lowing two conditions should be mentioned, since they summarize the
most elementary additional conditions that a contraction operator is
conventionally required to satisfy:

If p /∈ Cn(∅) then p /∈ Cn(K ÷ p). (success)

If p /∈ K \ (K ÷ q) for all q, then K ÷ p = K. (futility)

Futility says essentially that if p cannot be removed from K by ÷, then
contraction by p leaves K unchanged. As the following observation
shows, futility summarizes two well-known postulates, namely vacuity
(If p /∈ Cn(K), then K ÷ p = K) (Alchourrón et al 1985) and failure
(If p ∈ Cn(∅), then K ÷ p = K.) (Fuhrmann and Hansson 1994).

OBSERVATION 2. Let K be a belief set and ÷ an operation on K
that satisfies closure and success. Then ÷ satisfies futility if and only
if it satisfies both vacuity and failure.

PROOF OF OBSERVATION 2: For one direction, let vacuity and
failure hold, and let p /∈ K \ (K ÷ q) for all q. If p /∈ K, then it follows
from vacuity that K ÷ p = K. In the principal case when p ∈ K, we
have p ∈ K÷ q for all q, thus p ∈ K÷ p, thus p ∈ Cn(K÷ p). It follows
from success that p ∈ Cn(∅) and from failure that K ÷ p = K.
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Finitude in Belief Revision 7

For the other direction, let futility be satisfied. To show that vacuity
holds, let p /∈ Cn(K). Then p /∈ K \ (K÷ q) for all q, and futility yields
K ÷ p = K. To show that failure holds, let p ∈ Cn(∅). Then closure
yields p ∈ K ÷ q for all q, thus p /∈ K \ (K ÷ q) for all q, and futility
yields K ÷ p = K.

Success expresses the assumption that all non-tautological sentences
are contractible. Arguably, this is not a fully realistic condition. Alter-
natively, we may assume that some non-tautologies are so entrenched
in the belief system that they cannot be contracted, at least not in
a single step. (Fermé and Hansson 2001) In such a framework, the
following weakened variant of the success condition is more adequate:

If p /∈ Cn(K ÷ q) then p /∈ Cn(K ÷ p). (persistence) (Fermé and
Hansson 2001, p 86)

4. Three approaches

Just as in the standard AGM framework we will be concerned with the
contraction of a belief set K by a sentence p. Thus, neither multiple nor
iterated contraction will be covered. Since the subject of this study is
finitistic belief contraction, it will be assumed that K is finite-based. As
I have shown elsewhere (Hansson 2006a), the standard AGM operator
of partial meet contraction does not preserve finite-basedness. In other
words, partial meet contraction of a finite-based belief set by a single
sentence can result in a contraction outcome that is not finite-based. In
what follows, three alternative approaches will be proposed, in which
finite-basedness is preserved.

4.1. Belief bases

Probably the most obvious way to make belief contraction finitistic,
and the only way with some tradition in the area, is the use of belief
bases. A belief base is a (typically finite) subset of the belief set K that
has the same logical closure as K.

DEFINITION 2. (1) Any set B of sentences is a belief base.
(2) Let K be a belief set (theory). Then a set B of sentences is a

belief base for K if and only if K = Cn(B).

In base-generated contraction (Fuhrmann 1991, Hansson 1993), there is
a belief base B for K, such that for each sentence p, K÷p = Cn(B′) for
some subset B′ of B. More generally, base contraction can be defined
as follows:

FinitudeWlodek60.tex; 30/08/2006; 23:31; p.7
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8 Sven Ove Hansson

DEFINITION 3. (1) A base function for the belief set K is a function
b from sentences to sets of sentences, such that for all p, b(p) ⊆ K.

(2) An operation ÷ for K is base-generated if and only if there is
some base function b such that for all p, K ÷ p = Cn(b(p)).

As should be obvious, the belief base can be reconstructed from b as
∪{b(p) | p ∈ L}. The following observation provides an axiomatic
characterization of this very general construction, and identifies the
conditions under which it satisfies the finiteness properties.

OBSERVATION 3. (1) An operator ÷ on the belief set K is a base-
generated contraction if and only if ÷ satisfies closure and inclusion.

Furthermore, this ÷
(2) satisfies finite-based outcomes if and only if it is generated from

a base function b such that for all p, b(p) is finite-based.
(3) satisfies finite range if and only if it is generated from a base

function b such that {Cn(b(p)) | p ∈ L} is finite.

PROOF OF OBSERVATION 3: Part 1: For one direction, let ÷ be
a base-generated contraction. It follows from Definition 3 that closure
and inclusion are satisfied. For the other direction, let ÷ satisfy closure
and inclusion. For each p, let b(p) = K ÷ p.

Parts 2 and 3 follow directly from Definition 3.

For any belief base B, {Cn(X) | X ⊆ B} is the set of possible con-
traction outcomes that can be generated from B. We can call this its
range, and define two belief bases as range equivalent if they have the
same range.

DEFINITION 4. Two belief bases B and B′ are range equivalent if
and only if {Cn(X) | X ⊆ B} = {Cn(X) | X ⊆ B′}.

OBSERVATION 4. Two belief bases B and B′ are range equivalent
if and only if each element of C&(B) is logically equivalent with some
element of C&(B′), and vice versa.

PROOF OF OBSERVATION 4: For one direction, let B and B′ be
range equivalent and let p ∈ C&(B). Then there is some X ⊆ B such
that p = &X. Since B and B′ are range equivalent there is some X ′ ⊆
B′ such that Cn(X ′) = Cn(X). Then &X ′ ∈ C&(B′).

For the other direction, let the condition given in the observation
be satisfied, and let Z belong to the range of B, i.e. Z = Cn(X) for
some X ⊆ B. It follows from the condition that there is some X ′ ⊆ B′

such that ` &X ↔ &X ′, thus we have Z = Cn(X) = Cn({&X}) =
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Finitude in Belief Revision 9

Cn({&X ′}) = Cn(X ′). This is sufficient to show that range equivalence
holds.

4.2. Specified meet contraction

The recently proposed operation of specified meet contraction (Hansson
2006a, 2006b) has turned out to be a convenient method to construct
finitistic contraction operators. Specified meet contraction makes use
of full meet contraction (∼) as a building-block in reconstructing other
operations of contraction, combining it with a sentential selector. This
is a function that, intuitively speaking, takes us from the given con-
traction input p to some other sentence f(p) that represents the part
of the input that is “really” going to be completely removed from the
belief set. (Hence, if in the contraction by p&q, we remove p but let q
remain, then f(p&q) should not imply q.) The formal definition is as
follows:

DEFINITION 5. (Hansson 2006a) (1) A sentential selector is a func-
tion from and to L.

(2) An operation ÷ on K is an operation of specified meet contrac-
tion if and only if there is a sentential selector f such that for all p,
K ÷ p = K ∼ f(p).

The reason why specified meet contraction is finitistic is that full meet
contraction, in sharp contrast to partial meet contraction, always yields
a finite-based outcome if the original belief set is finite-based:

OBSERVATION 5. (Hansson 2006a) If K is finite-based, then so is
K ∼ p for all p.

LEMMA 1. Let K be a logically closed set and ∼ the operator of full
meet contraction for K. Then for all sentences p ∈ K:
K ∼ p = K ∩ Cn({¬p}).

PROOF OF LEMMA 1: See Alchourrón and Makinson 1982, pp. 18-19
or Hansson 1999, pp. 125-126.

PROOF OF OBSERVATION 5: Due to Lemma 1, K ∼ p = K ∩
Cn({¬p}), and since K is finite-based we then have K ∼ p = Cn({&K∨
¬p}) = Cn({p → &K}).

A surprisingly wide range of contraction operators can be constructed
in this way:
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10 Sven Ove Hansson

OBSERVATION 6. (Hansson 2006b) An operation ÷ on a finite-based
belief set K is a specified meet contraction if and only if it satisfies:

K ÷ p ⊆ K (inclusion)
K ÷ p = Cn(K ÷ p) (closure)
K ÷ p is finite-based (finite-based outcomes)

PROOF OF OBSERVATION 6: For one direction, let K ÷ p = K ∼
f(p). Inclusion and closure follow from the properties of full meet
contraction. It follows from Observation 5 that finite-based outcomes is
satisfied.

For the other direction, let ÷ satisfy the three postulates. Due to
finite-based outcomes, &(K÷p) is well-defined. We can therefore define
f(p) so that:

If K ÷ p ⊂ K, then: f(p) = &(K ÷ p) → &K.
Otherwise: f(p) /∈ K \ Cn(∅).

In order to verify the construction we need to show that the identity
K ÷ p = K ∼ f(p) holds. Due to inclusion, either K ÷ p = K or
K ÷ p ⊂ K. In the former case, it follows directly from our definition
of f(p) and the properties of full meet contraction that K ∼ f(p) = K.
In the latter case we have:
K ÷ p = Cn({&(K ÷ p)}) (closure, finite-based outcomes)
= Cn({&K ∨ ¬(&(K ÷ p) → &K)})

(Since ` &K → &(K ÷ p) that follows from inclusion)
= Cn({&K}) ∩ Cn({¬(&(K ÷ p) → &K)})
= K ∩ Cn({¬(&(K ÷ p) → &K)})
= K ∼ (&(K ÷ p) → &K) (Lemma 1)
= K ∼ f(p).

It can be concluded from Observation 6 that specified meet contraction
is sufficiently general to cover all plausible contraction operations.

The following observation introduces the other finiteness property:

OBSERVATION 7. An operator ÷ of specified meet contraction, with
the sentential selector f , satisfies finite range if and only if {f(p) | p ∈
L} ∩K has only a finite number of logically non-equivalent elements.

LEMMA 2. Let p, q ∈ K. Then K ∼ p = K ∼ q if and only if ` p ↔ q.

PROOF OF LEMMA 2: For one direction, let K ∼ p = K ∼ q. It
follows from Lemma 1 that ` (p → &K) ↔ (q → &K). From this,
` &K → p, and ` &K → q it follows that ` p ↔ q.

For the other direction, let ` p ↔ q. Then K ∼ p = K ∼ q follows
directly from the properties of full meet contraction.
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Finitude in Belief Revision 11

PROOF OF OBSERVATION 7: For one direction, let ÷ satisfy finite
range and suppose for contradiction that {f(p) | p ∈ L} ∩ K has an
infinite number of logically non-equivalent elements. It follows from
Lemma 2 that {K ∼ f(p) | f(p) ∈ K} is infinite as well, contrary to
finite range.

For the other direction, let {f(p) | p ∈ L} ∩K have a finite number
of non-equivalent elements. Then, according to Lemma 2, {K ∼ f(p) |
f(p) ∈ K} is finite. It follows from the properties of full meet contrac-
tion that {K ∼ f(p) | f(p) /∈ K} = {K}, Thus, {K ÷ p | p ∈ L} =
{K ∼ f(p) | f(p) ∈ K} ∪ {K ∼ f(p) | f(p) /∈ K} is finite, i.e. finite
range is satisfied.

Based on Lemma 2, an identity criterion for specified meet contraction
is readily obtainable.

OBSERVATION 8. Let ÷ and ÷′ be the operators of specified meet
contraction for a belief set K that are based on the sentential selectors
f and f ′, respectively. Then ÷ and ÷′ are identical (i.e., K÷p = K÷′p
for all p) if and only if for all p:

(1) f(p) ∈ K \ Cn(∅) if and only if f ′(p) ∈ K \ Cn(∅), and
(2) if f(p), f ′(p) ∈ K \ Cn(∅) then ` f(p) ↔ f ′(p).

PROOF OF OBSERVATION 8: K ÷ p = K ÷′ p holds for all p if and
only if (i) for all p, K ÷ p = K iff K ÷′ p = K, and (ii) whenever
K ÷ p ⊂ K, then K ÷ p = K ÷′ p. It follows from the properties of full
meet contraction that (i) holds if and only if (1) is satisfied. It follows
from Lemma 2 that (ii) holds if and only if (2) is satisfied.

4.3. A geometric model

When I showed some preliminary results on specified meet contraction
to Wlodek Rabinowicz, emphasizing its finitistic properties, he urged
me to clarify what this would mean in a propositional framework in
which geometric intuitions can be applied.

In such a framework, sets of possible worlds are used as an alterna-
tive representation of belief states. A belief state can be represented by
the proposition (set of possible worlds) that contains exactly those pos-
sible worlds that are compatible with the agent’s beliefs. (Grove 1988,
Lindström and Rabinowicz 1991) There is a close connection between
propositions and belief sets. The belief set K and the proposition (set
of possible worlds) W represent the same belief state if and only if it
holds for each possible world W that:

W ∈ W if and only K ⊆ W . (For details, see Hansson 1999, p. 221)
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12 Sven Ove Hansson

It follows that if the belief set K and the proposition W represent the
same belief state, then W consists of exactly those possible worlds that
contain K. This set of possible worlds will be denoted by [K]. Hence, a
proposition W represents the same belief state as a belief set K if and
only if W = [K]. For every belief set K there is a set [K] of possible
worlds (a proposition) that represents the same belief state as K. If
K is the inconsistent belief set, then [K] = ∅. Otherwise, [K] is a
non-empty set of possible worlds.

For any sentence p, [p] is an abbreviation of [Cn({p})]. A proposition
W is sentence-representing if and only if there is some sentence p
such that W = [p]. If the logic is infinite (has an infinite number of
equivalence classes), then the set of propositions has higher cardinality
than the set of sentences, and it follows that not all propositions are
sentence-representing.

Possible world models can be used for contraction. In contraction,
a restriction on what worlds are possible (compatible with the agent’s
beliefs) is removed. Thus, the set of possibilities is enlarged. Therefore
the contraction of [K] by [p] is a superset of [K]. The following is a
fully general selection mechanism for such contractions:

DEFINITION 6. (1) A propositional extender for K is a function g
from and to the set of propositions such that for all W, [K] ⊆ g(W).

(2) The propositional extender g is focused if and only if it holds
for all sentences p that g([p]) is sentence-representing.

(3) An operator ÷ on K is a propositional contraction if and only if
there is a propositional extender g such that for all p, K ÷ p = ∩g([p]).

(Alternatively, propositional contraction can be defined as an operator
� on the proposition [K] such that [K] � p = g([p]).) Propositional
contraction can be axiomatically characterized as follows:

OBSERVATION 9. An operator ÷ on a finite-based belief set K is a
propositional contraction if and only if it satisfies:

K ÷ p ⊆ K (inclusion) and
K ÷ p = Cn(K ÷ p) (closure).

PROOF OF OBSERVATION 9: For one direction, let ÷ be a proposi-
tional contraction. It follows directly from Definition 6 that inclusion
and closure are satisfied. For the other direction, let ÷ satisfy inclusion
and closure. Define g such that for all p:

g([p]) = {W ∈ W | K ÷ p ⊆ W}
It follows from inclusion that [K] ⊆ g([p]) for all p, so that g satisfies
the criterion of Definition 6 for being a propositional extender. We then
have:
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Finitude in Belief Revision 13

∩g([p]) = ∩{W ∈ W | K ÷ p ⊆ W}
= Cn(K ÷ p)
= K ÷ p (closure)

OBSERVATION 10. Let ÷ be the propositional contraction on a finite-
based belief set K that is based on the propositional extender g. Then
÷ satisfies finite-based outcomes if and only if g is focused.

LEMMA 3. Let A and B be logically closed sets. Then:
(1) [A] ⊆ [B] if and only if B ⊆ A, and
(2) [A] = [B] if and only if A = B.

PROOF OF LEMMA 3: See Hansson 1999, pp. 52-53.

PROOF OF OBSERVATION 10: For one direction, let g be focused.
Then for each p there is some q such that g([p]) = [q], and we have
K ÷ p = ∩(g([p])) = ∩([q]) = Cn({q}) so that K ÷ p is finite-based.

For the other direction, let ÷ satisfy finite-based outcomes. We have
K ÷ p = ∩(g([p])). Since K ÷ p is finite-based it follows that ∩[&(K ÷
p)] = ∩g([p]). Lemma 3 yields g([p]) = [&(K ÷ p)]. Since this holds for
all p, g is focused.

OBSERVATION 11. Let ÷ be the propositional contraction on a finite-
based belief set K that is based on the propositional extender g. Then
÷ satisfies finite range if and only if {g(p) | p ∈ L} is finite.

PROOF OF OBSERVATION 11: Obvious.

DEFINITION 7. Two propositional extenders g and g′ are contraction
equivalent if and only if, for all p, K ÷ p = K ÷′ p, where ÷ and ÷′

are the propositional contractions generated by g and g′, respectively.

OBSERVATION 12. Two propositional extenders g and g′ are con-
traction equivalent if and only if they are identical (i.e., if and only if
g(p) = g′(p) for all p).

PROOF OF OBSERVATION 12: K ÷ p = K ÷′ p holds if and only if
∩g([p]) = ∩g′([p]), thus according to Lemma 3 if and only if g([p]) =
g′([p]).
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14 Sven Ove Hansson

5. Connections between the three approaches

The major results on range conditions from the previous section are
summarized in the table.

Base-generated
contraction

Specified meet
contraction

Propositional
contraction

Closure Always Always Always

Inclusion Always Always Always

Finite-
based
outcomes

b(p) is finite-
based for all
p

Always g is focused

Finite
range

{Cn(b(p))|p ∈ L}
is finite

{f(p)|p ∈ L}∩K
is logically finite

{g(p)|p ∈ L} is
finite

Finally, the following two observations connect the three approaches:

OBSERVATION 13. Let K be a finite-based belief set, g a focused
propositional extender and b a base function for K such that for all
p, b(p) is finite-based. Furthermore, let ÷g be the contraction operator
that is based on g and ÷b the contraction operator that is based on b.
Then the following two conditions are equivalent:

(1) K ÷b p = K ÷g p for all p.
(2) g([p]) = [b(p)].

PROOF OF OBSERVATION 13:
K ÷b p = K ÷g p
if and only if Cn(b(p)) = ∩g([p]) (Definitions 3 and 6)
if and only if [b(p)] = g([p]) (Lemma 3)

OBSERVATION 14. Let K be a finite-based belief set, f a sentential
selector and b a base function for K such that for all p, b(p) is finite-
based. Furthermore, let ÷f be the contraction operator that is based on
f and ÷b the contraction operator that is based on b. Then the following
three conditions are equivalent:

(1) K ÷b p = K ÷f p for all p.
(2) ` &b(p) ↔ (f(p) → &K) for all p.
(3) ` f(p) ↔ (&b(p) → &K) for all p.
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PROOF OF OBSERVATION 14: To see that (1) and (2) are equivalent,
note that K ÷b p = Cn(b(p)) according to Definition 3 and K ÷f p =
Cn({f(p) → &K}) according to Definition 5 and Lemma 1.

To see that (2) and (3) are equivalent it is sufficient to note that
since ` K → f(p) and ` K → &b(p), &b(p) ↔ (f(p) → &K) and
f(p) ↔ (&b(p) → &K) are equivalent.
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Fuhrmann, André and Sven Ove Hansson (1994) “A Survey of Multiple
Contraction”, Journal of Logic, Language and Information, 3: 39-76.

Gärdenfors, Peter and David Makinson (1988) “Revisions of Knowl-
edge Systems Using Epistemic Entrenchment”, Second Conference on
Theoretical Aspects of Reasoning about Knowledge. pp. 83-95.

Grove, Adam (1988) “Two Modellings for Theory Change”, Journal of
Philosophical Logic 17:157-170.

Hansson, Sven Ove (1993) “Theory Contraction and Base Contraction
Unified”, Journal of Symbolic Logic 58: 602-625.

Hansson, Sven Ove (1999) A Textbook of Belief Dynamics. Theory
Change and Database Updating, Kluwer.

Hansson, Sven Ove (2006a) “Specified Meet Contraction”, manuscript.

Hansson, Sven Ove (2006b“Contraction Based on Sentential Selection”,
manuscript.

FinitudeWlodek60.tex; 30/08/2006; 23:31; p.15

14

14

  



16 Sven Ove Hansson

Lindström, Sten and Wlodek Rabinowicz: (1991) “Epistemic Entrench-
ment with Incomparabilities and Relational Belief Revision”, in André
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