Search results

Filter

Filetype

Your search for "*" yielded 528668 hits

Evaluation of the relationship between protein S and C4b-binding protein isoforms in hereditary protein S deficiency demonstrating type I and type III deficiencies to be phenotypic variants of the same genetic disease

Type III protein S deficiency is characterized by a low plasma level of free protein S, whereas the total concentration of protein S is normal. In contrast, both free and total protein S levels are low in type I deficiency. To elucidate the molecular mechanism behind the selective deficiency of free protein S in type III deficiency, the relationship between the plasma concentrations of β-chain con

The factor VR506Q mutation causing APC resistance is highly prevalent amongst unselected outpatients with clinically suspected deep venous thrombosis

OBJECTIVE: Resistance to activated protein C (APC resistance), caused by a single point mutation in the factor V gene (FV:R506Q), is a major risk factor for venous thrombosis. As the significance of this mutation among unselected outpatients with deep-vein thrombosis (DVT) is not established, we have studied its prevalence among consecutive outpatients attending the emergency room due to a clinica

Evaluation of original and modified APC-resistance tests in unselected outpatients with clinically suspected thrombosis and in healthy controls

APC-resistance is the most common hereditary condition associated with venous thrombosis. It is in a majority of cases due to a single point mutation in the factor V gene (FVR506Q). Currently used functional APC-resistance tests have 85-90% sensitivity and specificity for the FVR506Q mutation. A modified test which includes predilution of patient plasma in factor V depleted plasma has increased th

A common thrombomodulin amino acid dimorphism is associated with myocardial infarction

Endothelial dysfunction and haemostatic imbalance are believed to be important aetiological factors in the development of acute coronary syndromes. Thrombomodulin (TM) is an integral membrane protein crucial for normal endothelial function and activation of the protein C anticoagulant pathway. We have investigated the importance of a common C/T dimorphism in the TM gene (nucleotide 1418) for devel

Identification of the same factor V gene mutation in 47 out of 50 thrombosis-prone families with inherited resistance to activated protein C

Resistance to activated protein C (APC) is the most prevalent inherited cause of venous thrombosis. The APC resistance phenotype is associated with a single point mutation in the factor V gene, changing Arg506 in the APC cleavage site to a Gln. We have investigated 50 Swedish families with inherited APC resistance for this mutation and found it to be present in 47 of them. Perfect cosegregation be

Homozygous APC-resistance combined with inherited type I protein S deficiency in a young boy with severe thrombotic disease

Inherited resistance to activated protein C (APC) is a frequent cause of familial thrombosis. It is associated with a factor V gene point mutation replacing arginine506 in the APC-cleavage site with a glutamine. Thrombotic events are rare during childhood even in patients with homozygous APC-resistance. We now wish to report on a case of severe venous thrombosis, in a 10-year-old boy. He was found

Inherited resistance to activated protein C caused by presence of the FV:Q506 allele as a basis of venous thrombosis

Inherited resistance to activated protein C (APC) was recently discovered as a cause of familial thrombophilia and is now known to be the most common genetic risk factor for venous thrombosis. In a majority of cases, APC resistance is associated with a single point mutation in the factor V gene, which results in substitution of arginine (R) at position 506 by glutamine (Q) (FV:Q506). The mutation

Activated protein C resistance due to a common factor V gene mutation is a major risk factor for venous thrombosis

Inherited resistance to activated protein C (APC) was recently discovered to be a cause of familial thrombophilia and is now known to be the most common genetic risk factor for venous thrombosis. It is caused by a single point mutation in the gene for factor V, which predicts substitution or arginine (R) at position 506 with a glutamine (Q). Accordingly, the activated form of mutated factor V (FVa

Factor V:Q506 mutation and anticardiolipin antibodies in systemic lupus erythematosus

Inherited resistance to activated protein C (APC resistance) is an important risk factor of venous thrombosis. It is caused by a point mutation in the gene coding for coagulation factor V, called FV:Q506. Arterio-venous thrombosis is a common and serious medical problem in patients with systemic lupus erythematosus (SLE). We studied the prevalence of the factor V mutation associated with APC resis

Structural determinants in ApoA-I amyloidogenic variants explain improved cholesterol metabolism despite low HDL levels

Twenty Apolipoprotein A-I (ApoA-I) variants are responsible for a systemic hereditary amyloidosis in which protein fibrils can accumulate in different organs, leading to their failure. Several ApoA-I amyloidogenic mutations are also associated with hypoalphalipoproteinemia, low ApoA-I and high-density lipoprotein (HDL)-cholesterol plasma levels; however, subjects affected by ApoA-I-related amyloid

Plasma stem cell factor levels are associated with risk of cardiovascular disease and death

OBJECTIVE: Stem cell factor (SCF) is a key growth factor for several types of stem and progenitor cells. There is experimental evidence that such cells are of importance for maintaining the integrity of the cardiovascular system. We investigated the association between circulating levels of SCF and risk for development of cardiovascular events and death.METHODS: SCF was analysed by the proximity e

Molecular mechanisms controlling phosphate-induced downregulation of the yeast Pho84 phosphate transporter

In Saccharomyces cerevisiae, phosphate uptake is mainly dependent on the proton-coupled Pho84 permease under phosphate-limited growth conditions. Phosphate addition causes Pho84-mediated activation of the protein kinase A (PKA) pathway as well as rapid internalization and vacuolar breakdown of Pho84. We show that Pho84 undergoes phosphate-induced phosphorylation and subsequent ubiquitination on am

Bridging across length scales : multi-scale ordering of supported lipid bilayers via lipoprotein self-assembly and surface patterning

We show that a two-step process, involving spontaneous self-assembly of lipids and apolipoproteins and surface patterning, produces single, supported lipid bilayers over two discrete and independently adjustable length scales. Specifically, an aqueous phase incubation of DMPC vesicles with purified apolipoprotein A-I results in the reconstitution of high density lipoprotein (rHDL), wherein nanosca

Mapping the structural transition in an amyloidogenic apolipoprotein A-I

The single amino acid mutation G26R in human apolipoprotein A-I (apoA-IIOWA) leads to the formation of beta-secondary structure rich amyloid fibrils in vivo. Here we show that full-length apoA-IIOWA has a decreased lipid-binding capability, an increased amino-terminal sensitivity to protease, and a propensity to form annular protofibrils visible by electron microscopy. The molecular basis for the

Identification, expression, and functional analyses of a thylakoid ATP/ADP carrier from Arabidopsis

In plants the chloroplast thylakoid membrane is the site of light-dependent photosynthetic reactions coupled to ATP synthesis. The ability of the plant cell to build and alter this membrane system is essential for efficient photosynthesis. A nucleotide translocator homologous to the bovine mitochondrial ADP/ATP carrier (AAC) was previously found in spinach thylakoids. Here we have identified and c

Electron paramagnetic resonance spectroscopy of site-directed spin labels reveals the structural heterogeneity in the N-terminal domain of apoA-I in solution

Apolipoprotein A-I (apoA-I) is the major protein constituent of high density lipoprotein (HDL) and plays a central role in phospholipid and cholesterol metabolism. This 243-residue long protein is remarkably flexible and assumes numerous lipid-dependent conformations. Consequently, definitive structural determination of lipid-free apoA-I in solution has been difficult. Using electron paramagnetic

Structure and function of the GTP binding protein Gtr1 and its role in phosphate transport in Saccharomyces cerevisiae

The Pho84 high-affinity phosphate permease is the primary phosphate transporter in the yeast Saccharomyces cerevisiae under phosphate-limiting conditions. The soluble G protein, Gtr1, has previously been suggested to be involved in the derepressible Pho84 phosphate uptake function. This idea was based on a displayed deletion phenotype of Deltagtr1 similar to the Deltapho84 phenotype. As of yet, th