Optimal results for the nonhomogeneous initial-boundary value problem for the two-dimensional Navier-Stokes equations
In this work we study the fully nonhomogeneous initial boundary value problem for the two-dimensional time-dependent Navier–Stokes equations in a general open space domain in R2 with low regularity assumptions on the initial and the boundary value data. We show that the perturbed Navier–Stokes operator is a diffeomorphism from a suitable function space onto its own dual and as a corollary we get t