Rotating Bose-Einstein condensates: Closing the gap between exact and mean-field solutions
When a Bose-Einstein-condensed cloud of atoms is given some angular momentum, it forms vortices arranged in structures with a discrete rotational symmetry. For these vortex states, the Hilbert space of the exact solution separates into a "primary" space related to the mean-field Gross-Pitaevskii solution and a "complementary" space including the corrections beyond mean field. Considering a weakly